

2021 Water Quality Report

Village of
Romeoville
Where Community Matters

January 1 to December 31, 2021

Water Quality Report

The Safe Drinking Water Act (SDWA), promulgated by Congress in 1974, amended in 1986 and 1996, establishes a Federal program to monitor and increase the safety of the nation's drinking water supply. The SDWA authorizes the U.S. Environmental Protection Agency (EPA) to set and implement health based standards to protect against both naturally occurring and man-made contaminants in the drinking water. The EPA is also responsible for assessing and protecting drinking water sources, protecting wells and collection systems, making sure water is treated by qualified operators, ensuring the integrity of distribution system and making information available to the public on the quality of their drinking water.

The Village of Romeoville analyzes over 1,300 water samples a year, for more than 120 different substances including microbial organisms, inorganic compounds, (including lead and copper), organic compounds (including pesticides and herbicides) and radioactive material. Our licensed staff, along with state and federal regulators, routinely monitor our operations, compliance and testing protocols to ensure that we deliver safe, high quality drinking water to our customers.

This report provides information regarding the quality of the drinking water delivered to you by the Village of Romeoville in 2021. Included are details about where your water comes from, what it contains and how it compares to standards set by regulatory agencies.

For more information regarding this report please contact The Village of Romeoville Public Works Department at (815) 886-1870. Este informe contiene información muy importante sobre el agua que usted bebe. Tradúzcalo ó hable con alguien que lo entienda bien.

Where does your water come from?

The kitchen sink, that's easy! It often feels that simple, but the water supply provided by the Village has somewhat of a more complicated route before you actually use it in your home or business.

The Village of Romeoville draws its groundwater supply from 5 deep wells (pumping water from 1,000 ft. below the surface) and 7 shallow wells (pumping from 80 ft. below the surface) located throughout the Village. We provide water to the residents of the Village of Romeoville and portions of unincorporated Plainfield and Bolingbrook.

Once the raw water is pumped, chlorine is added for disinfection. This treated water is then transported to various storage tanks throughout the Village. Through a maze of mains, the water is then pumped to all areas of the Village. Feeding off the main line is each individual service line leading into your residence or business. A curb stop is installed at the beginning of the service line just off the main which serves as the primary access to terminate and restore water service. As the service line feeds into the home, there is a shut-off valve just prior to the water meter. This valve is owned and maintained by the resident and allows them to terminate the supply of water feeding into the home when needed.

The Village of Romeoville monitors the tank levels, pressures, and flow through a centralized computer system called SCADA (Supervisory Control and Data Acquisition) used for gathering and analyzing real time data. Levels in the storage tanks do not remain constant throughout the day. During the night and early morning hours, the tank levels are at their highest. As the usage throughout town increases, the tank levels decrease. This cycle allows constant pumping rates and minimizes the number of starts and stops on the pumping equipment.

Did
you know...

Americans consume
about 341 billion
gallons of tap water
everyday

Source Water Assessment

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and groundwater wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and can pickup substances resulting from the presence of animals or from human activity and, in some cases, radioactive material.

Possible contaminants consist of:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife
- Inorganic contaminants, such as salts and metals, which may be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff and residential uses
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff and septic systems
- Radioactive contaminants, which may be naturally occurring or be the result of oil and gas production and mining activities

We want our residents and business owners to be informed about their water quality. If you would like to learn more, please feel welcome to attend any of our regularly scheduled meetings. The source water assessment for our supply has been completed by the Illinois EPA. **If you would like a copy of this information, please stop by the Public Works Facility, 615 Anderson Drive or call the Public Works Department at (815) 886-1870.** To view a summary version of the completed Source Water Assessments, including: Importance of Source Water; Susceptibility to Contamination Determination; and documentation/recommendation of Source Water Protection Efforts, you may access the Illinois EPA website at <http://www.epa.state.il.us/cgi-bin/wp/swap-fact-sheets.pl>. Based on information obtained in a Well Site Survey published by the Illinois EPA, eight potential sources or possible problem sites were identified within the survey area of Romeoville's wells. Furthermore, information provided by the Leaking Underground Storage Tank and Remedial Project Management Sections of the Illinois EPA indicated several additional sites with ongoing remediations that may be of concern. The Illinois EPA has determined that the source water obtained from Romeoville's Wells #4, #7, #9, #10, #11, and #13 is not susceptible to contamination. However, the source water obtained from Wells 1, #3, #5, #8, and #12 is susceptible to contamination. This determination is based on a number of criteria including: monitoring conducted at the wells, monitoring conducted at the entry point to the distribution system and the available hydrogeologic data on the wells.

Water Quality Table Definitions

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCL's are set as close to the Maximum Contaminant Level Goal as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLG's allow for a margin of safety. mg/l: milligrams per liter or parts per million – or one ounce in 7,350 gallons of water ug/l: micrograms per liter or parts per billion – or one ounce in 7,350,000 gallons of water.

N/A: Not applicable

Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLG's do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Parts Per Billion (ppb): One part per billion (or micrograms per liter) or one ounce in 7,350,000 gallons of water.

Parts Per Million (ppm): One part per million (or milligrams per liter) or one ounce in 7,350 gallons of water.

Picocuries Per Liter (pCi/L): A measure of radioactivity.

Water Quality

Did
you know...

From foods and beverages to toothpastes and perfumes, water is the primary ingredient in hundreds of thousands of everyday products.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised people with cancer undergoing chemotherapy, those who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the USEPA's Safe Drinking Water Hotline (800) 426-4791.

Monitoring

We are required to sample and analyze our drinking water system on a regular and routine basis. We sample for several hundreds of possible contaminants on an ongoing and continuous schedule. **During the 2021 monitoring year the Village of Romeoville and its IEPA licensed operators are proud to inform our residents and businesses that the Village had no violations of any kind. Your Romeoville drinking water is safe and clean and meets all IEPA and USEPA Drinking Water Standards.**

Water Quality Test Results

Regulated Contaminants Detected

The following tables contain scientific terms and measures, some of which may require explanation. In addition to the following contaminants that were detected in the water supply, over 100 contaminants were tested for and were NOT DETECTED in the water supply.

LEAD & COPPER

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. As an informational note, **The Village of Romeoville Drinking Water System does not contain any lead water mains or service lines.** The Village of Romeoville is responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <http://www.epa.gov/safewater/lead>.

Results of Monitoring for Lead & Copper

Results meet or surpass state and federal drinking water regulations.

Collection Date	Lead MCLG	Lead Action Level (AL)	Lead 90 th Percentile	Number of Sites Over Lead AL	Copper MCLG	Copper Action Level (AL)	Copper 90 th Percentile	Number of Sites of Copper AL	Likely Source of Contamination	Violation
2021	0	15 ppb	2.32	0	1.3 ppm	1.3 ppm	0.127 ppm	0	Corrosion of household plumbing systems; erosion of natural deposits leaching from wood preservatives	No

Note: The state requires monitoring of certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

Therefore, some of this data may be more than one year old.

COLIFORM BACTERIA

Results of Coliform Bacteria Monitoring

Results meet or surpass state and federal drinking water regulations.

Collection Date	MCLG	Total Coliform MCL	Highest No of Positive	Fecal Coliform or E Coli MCL	Total No of Positive E Coli or Fecal Coliform Samples	Likely Source of Contamination	Violation
2021	0	5% of monthly samples are positive	3	N/A	0	Naturally present in the environment	No

DISINFECTANTS & DISINFECTION BY-PRODUCTS

Disinfection of drinking water is one of the major public health advances in the 20th century. One hundred years ago, typhoid and cholera epidemics were common throughout American cities and disinfection was a major factor in reducing these epidemics. However, the disinfectants themselves can react with naturally-occurring materials in the water to form unintended by-products which may pose health risks.

Results of Disinfectants & Disinfection By-Products Monitoring

Results meet or surpass state and federal drinking water regulations

Disinfectants & Disinfection By-Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Likely Source of Contamination	Violation
TTHMs (Total Trihalomethanes)	2021	28	21.22 – 28.1	No total goal	80	ppb	By-product of drinking water disinfection	No
Haloacetic Acids (HAA5)	2021	6	3.83 – 5.53	No total goal	60	ppb	By-product of drinking water disinfection	No
Chlorine	2021	1	.8 – 1.0	MRDL=4	MRDL=4	ppm	Water additive used to control microbes	No

INORGANIC CHEMICALS

Inorganic chemicals include salts, metals, and minerals. They can be naturally occurring or can result from storm water runoff, wastewater discharges, or farm activities. Because our source of drinking water is groundwater, a significant amount of naturally occurring minerals are dissolved in the water.

Results of Monitoring for Inorganic Chemicals

Results meet or surpass state and federal drinking water regulations

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Likely Source of Contamination	Violation
Fluoride	2020	0.94	0.6 – 0.94	4	4	ppm	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer & aluminum factories	No
Barium	2020	0.148	0.0143 – 0.148	2	2	ppm	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	No
Nitrate (measured as Nitrogen)	2021	0.34	0 – 0.34	10	10	ppm	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits	No
Iron	2020	0.0514	0 – 0.0514	N/A	1.0	ppm	This contaminant is not currently regulated by USEPA. However, the state regulates. Erosion of natural deposits	No

RADIONUCLIDES

Radionuclides are man-made or natural elements that emit radiation. A picocurie per liter(pCi/L) is a unit of radioactivity. A curie is the amount of radioactivity in a gram of radium. A picocurie is one trillionth of a curie.

Results of Monitoring for Radionuclides

Results meet or surpass state and federal drinking water regulations

Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Likely Source of Contamination	Violation
Gross Alpha (excluding radon & uranium)	2021	4	0 – 4	0	15	pCi/L	Erosion of natural deposits	No
Combined Radium	2021	5	0 – 4.7	0	5	pCi/L	Erosion of natural deposits	No

STATE REGULATED CONTAMINANTS

In addition to enforcing the Safe Drinking Water Act, the Illinois EPA enforces state regulations. Iron and manganese stain bathroom fixtures and impart objectionable tastes to water in high concentrations. Sodium in drinking water with a concentration greater than 20 mg/l is of concern to persons on a sodium restricted diet of 500 mg per day or lower. For these reasons, the Illinois EPA has elected to regulate these contaminants.

Results of Monitoring for State Regulated Contaminants

Results meet or surpass federal drinking water regulations

State Regulated Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Likely Source of Contamination	Violation
Sodium There is not a state or federal MCL for sodium. Monitoring is required to provide information to consumers and health officials that are concerned about sodium intake due to dietary precautions. If you are on a sodium-restricted diet, you should consult a physician about this level of sodium in the water.	2020	142	99.1 – 142	N/A	N/A	ppm	Erosion of naturally occurring deposits; Used in water softener regeneration	No

PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS)

PFAS are present in many consumer goods, including food packaging and personal care products, and scientists have found levels of PFAS in the blood of nearly all individuals tested. Exposure to high levels of PFAS over time may cause adverse health effects such as increased cholesterol levels, increased risk of thyroid disease, low infant birth weights, reduced response to vaccines, pregnancy-induced hypertension and increased risk of liver and kidney cancer as seen in studies of laboratory animals. Exposure to PFAS above the recommended health-based guidance levels does not mean that a person will get sick or an adverse health effect will occur. Health-base guidance levels are conservative estimates. The possible health effects of PFAS are dependent on how much a person is exposed to and how long they are exposed to it. Exposure to PFAS above recommended health-based guidance levels for periods of time may mean that a person is at a greater risk of experiencing these adverse effects.

The Village of Romeoville has taken measures to respond to the results of this testing. As a proactive measure to protect our drinking water supply, Romeoville is working to:

- Continue to monitor PFAS levels through quarterly sampling
- Identify which water source (wells) are affected

Based on the initial results, the water department will perform additional sampling beginning in July 2021 and will keep the community updated and informed.

Additional information regarding PFAS, the statewide PFAS investigation work, and the impact to public health can be found on the Illinois IEPA PFAS webpage: <https://www2.illinois.gov/epa/topics/water-quality/pfas/Pages/default.aspx>

The confirmed sampling results for Romeoville area also available on Illinois EPA's Drinking Water Watch system at: <http://water.epa.state.il.us/dww/index.jsp>

PFAS Detection

In 2021, our Public Water System (PWS) was sampled as part of the State of Illinois PFAS Statewide Investigation. Results from this sampling indicated **PFAS were detected in our drinking water below the health advisory level established by Illinois EPA.**

Follow up monitoring is being conducted. For more information about PFAS health advisories:
<https://www2.illinois.gov/epa/topics/water-quality/pfas/Pages/pfas-healthadvisory.aspx>

The Illinois Environmental Protection Agency (Illinois EPA) recently tested our water system for 18 compounds known as Per- and Polyfluoroalkyl Substances (PFAS) as part of a statewide investigation of community water supplies. PFAS are a group of thousands of manmade substances that have been produced in the United States since the 1940s and utilized for a variety of applications ranging from water and stain-proofing to firefighting. Some PFAS have been phased out of production in the United States due to environmental and human health concerns, yet they persist in the environment and may contaminate surface and ground waters.

Neither the Illinois EPA nor the US EPA have yet developed enforceable drinking water standards for PFAS. In the interim, Illinois EPA has developed health-based guidance levels (HBGL) for the small number of PFAS for which there is appropriate information to do so. The health-based guidance levels (HBGL) are intended to be protective of all people consuming the water over a lifetime of exposure.

While none of the analytes sampled were above the health-based guidance levels (HBGL), Illinois EPA testing has determined that one or more PFAS were detected in our water system at levels greater than or equal to the lowest concentration the laboratory can reliably detect, shown as the Minimum Reporting Level (MRL) in the table below. The levels are presented in units of nanogram per liter (ng/L) or parts per trillion (ppt).

PFAS Analyte	Acronym	MRL (ng/L)	HBGL (ng/L)	Analytical Results Range (ng/L)
Perfluorobutanesulfonic acid	PFBS	2	2,100	3.4 – 4.1
Perfluoroheptanoic acid	PFHpA	2	---- ^a	2.8 – 4.2
Perfluorohexanesulfonic acid	PFHxS	2	140	Not Detected
Perfluorononanoic acid	PFNA	2	21	Not Detected
Perfluorooctanesulfonic acid	PFOS	2	14	Not Detected
Perfluorooctanoic acid	PFOA	2	2	Not Detected
Perfluorodecanoic acid	PFDA	2	----	Not Detected
Perfluorododecanoic acid	PFDoA	2	----	Not Detected
Perfluorohexanoic acid	PFHxA	2	560,000	5.3 – 11
Perfluorotetradecanoic acid	PFTA	2	----	Not Detected
Perfluorotridecanoic acid	PFTrDA	2	----	Not Detected
Perfluoroundecanoic acid	PFUnA	2	----	Not Detected
11-chloroeicosfluoro-3-oxaundecane-1-sulfonic acid	11CI-PF3OUDS	2	----	Not Detected
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid	9CI-PF3ONS	2	----	Not Detected
4,8-dioxa-3H-perfluorononanoic acid	ADONA	2	----	Not Detected
Hexafluoropropylene oxide dimer acid	HFPO-DA	2	560	Not Detected
N-ethyl perfluorooctanesulfonamidoacetic acid	NEtFOSAA	2	----	Not Detected
N-methyl perfluorooctanesulfonamidoacetic acid	NMeFOSAA	2	----	Not Detected

If you have any questions, please contact:

Matt Congoran
Village of Romeoville
Superintendent of Utilities
mcongoran@romeoville.org
(815) 886-1870

Illinois Environmental Protection Agency
 Barb Lieberoff
 Office of Community Relations
 epa.pfas@illinois.gov
 (217) 524-3038

Illinois Department of Health
 Brian Koch
 Division of Environmental Health
 Brian.Koch@illinois.gov
 (217) 782-5830

Water Conservation and a Healthy Lawn

Water Conservation Ordinance

Odd-Even Watering in effect May 10th through September 10th

Addresses ending in even numbers may water on even number calendar days.

Addresses ending in odd numbers may water on odd number calendar days.

Allowable Hours: 6 to 9 a.m. & 7 to 10 p.m.

Lawn Watering Tips —

- DO NOT WATER THE PAVEMENT! Position sprinklers to water the lawn and garden only.
- Water early in the day when lawns are normally wet from dew. Avoid midday watering due to evaporation and at night due to potential increased chances of some diseases.
- Longer grass means less evaporation. Let grass grow taller in hot, dry weather. Set your mower one notch higher than normal.
- Do not drizzle – a light sprinkling is the least effective method of watering. A good soaking gets to the root. Let the water sink in slowly. A lot of water applied quickly runs off onto the street. Use a kitchen timer as a reminder.
- For more information on water conservation and lawn care for your yard, please refer to following website presented by University of Illinois Extension called Lawn Talk at www.urbanext.uiuc.edu/lawntalk

